

If
$$\frac{dx}{dt} = 5$$
, $\frac{dy}{dt} = 4$, Sind $\frac{dz}{dt}$ at $(2,2,1)$ for
 $x^{2} + y^{2} + z^{2} = 9$.
 $2x \frac{dx}{dt} + 2y \frac{dy}{dt} + 2z \frac{dz}{dt} = 0$
Divide by 2, Plug in the Siven information
 $2.5 + 2.4 + 1.\frac{dz}{dt} = 0$
 $\frac{dz}{dt} = -18$

The height of a triangle increases at
$$1 \text{ cm/min}$$

The area increase at $2 \text{ cm}^2/\text{min}$.
At what rate is its base changing
when height is 10 cm and area is 100 cm²
 $\frac{dh}{dt} = 1$, $\frac{dA}{dt} = 2$, $\frac{db}{dt} = 3$, $h = 10$, $A = 100$
Area of $A = \frac{bh}{2}$, $2A = bh$
Triangle $A = \frac{bh}{2}$, $2A = bh$
 $2(100) = b \cdot 10$
 $\frac{d}{dt}[2A] = \frac{db}{dt}(bh]$
 $2 \cdot \frac{dA}{dt} = \frac{db}{dt} \cdot h + b \cdot \frac{dh}{dt}$
 $2 \cdot 2 = \frac{db}{dt} \cdot 10 + 20 \cdot 1$
 $\frac{db}{dt} \cdot 10 = 20 - 4$
 $\frac{db}{dt} = -1.6$ cm/min
Decreasing

A boat is pulled into a dock by a rope
attach to the Svont of the boat.
The dock is 1 meter higher than the top of
the boat.
The rope is pulled at the rate of
$$1m/s$$
,
How Sast is the boat approching the dock
when it is $8m$ from the dock?
 $Boat = 1m/s$
 $H = -1m/s$
 $H =$

Gravel is being dumped from a conveyor belt
at the rate of 30 ft³/min and it is
making a pile in the form of a cone
with diameter of its base always equa to
h=2t
$$r=\frac{h}{2}$$

dV = 30 ft³/min.
How fast is the
height is 10 ft³
 $V=\frac{1}{3}\pi r^{2}h$
 $3V=\pi r^{2}h$
 $3V=\pi r^{2}h$
 $12 \frac{dV}{dt}=\pi \cdot 3h^{2} \cdot \frac{dh}{dt}$
 $4\cdot 30=\pi \cdot 10^{2} \cdot \frac{dh}{dt}$

A ladder is learning against a Wall.
The ladder is 10 St long.
The bottom of the ladder Shides away
Srom the Wall at the rate of 4 St/min.
How Sast is the angle between the ladder
and the ground changing when the bottom
is 6 St from the Wall?

$$\frac{d\theta}{dt} = ?$$
 When $x=6$
 $\frac{d\theta}{dt} = ?$ When $x=6$
 $\frac{d\theta}{dt} = ?$ When $x=6$
 $\frac{d\theta}{dt} = ?$ When $x=6$
 $\frac{2}{10}$ 10 Cos $\theta = X$
Sin $\theta = \frac{S}{10}$ -10 Sin $\theta = \frac{d\theta}{dt} = \frac{dx}{dt}$
 $\sin \theta = \frac{S}{10}$ -10 Sin $\theta = \frac{d\theta}{dt} = \frac{dx}{dt}$
 $\sin \theta = \frac{S}{10}$ -10 Sin $\theta = \frac{d\theta}{dt} = \frac{dx}{dt}$
 $\frac{d\theta}{dt} = -\frac{1}{2}$
Rod./min.

Estimate Sin 31° Sin 31° ~ Sin 30° Linear Approximation $f(x) \approx f(\alpha) + f'(\alpha) \cdot (x - \alpha)$ $f(x) \approx f(\alpha) + f'(\alpha) \cdot (x - \alpha)$ $f(x) \equiv Sin x$ $f(30°) \equiv Sin 30° \equiv \frac{1}{2}$ $\alpha = 30°$ $f'(x) \equiv \cos x$ $= \frac{\pi}{6}$ $f'(30°) \equiv \cos 30° \equiv \frac{\sqrt{3}}{2}$ $f(x) \approx \frac{1}{2} + \frac{\sqrt{3}}{2}(x - \frac{\pi}{6})$ $180° \equiv \pi \text{ Rad}$ $f'(x) \approx \frac{1}{2} + \frac{\sqrt{3}}{2}(x - \frac{\pi}{6})$ $1° \equiv \frac{\pi}{80} \text{ Rad}$ $f(31°) \approx \frac{1}{2} + \frac{\sqrt{3}}{2}(31° - 30°)$ $= \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot 1° = \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\pi}{80}$ what about $= \frac{1}{2} + \frac{\pi\sqrt{3}}{360}$ Sin 31° $\approx .515$ $\approx .515$

Estimate
$$\sqrt[3]{65}$$

 $\sqrt[3]{65} \approx \sqrt[3]{64} = 4$
Linear approximation $L(x) = f(a) + f(a)(x-a)$
 $f(x) = \sqrt[3]{x}$ $f(64) = \sqrt[3]{64} = 4 = 4 + \frac{1}{48}(x-64)$
 $a = 64$ $f'(x) = \frac{1}{3\sqrt[3]{84^2}} = \frac{1}{3\sqrt[3]{84^2}} = \frac{1}{3\sqrt[3]{64^2}} = \frac{1}{3\sqrt[3$

Estimate
$$\tan 44^{\circ}$$

 $\tan 44^{\circ} \approx \tan 45^{\circ} \approx 1$
 $L(x) = 5(0) + 5(0)(x - 0)$
 $f(x) = \tan x$ $f(45^{\circ}) = \tan 45^{\circ} = 1$
 $\alpha = 45^{\circ}$ $f'(x) = \sec^{2}x$
 $f'(45^{\circ}) = \sec^{2}(x - 45^{\circ})$
 $\approx 1 + 2(x - 45^{\circ})$
 $\approx 1 + 2(44^{\circ} - 45^{\circ})$
 $\approx 1 + 2(44^{\circ} - 45^{\circ})$
 $= 1 - 2 \cdot 1^{\circ}$
 $= 1 - 2 \cdot \frac{\pi}{150} = 1 - \frac{\pi}{90} = \frac{1.965}{1.965}$
Using Calc.
 $\tan 44^{\circ} \approx .965688 - - - \cdot close$

Г